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1. INTRODUCTION

Piezoelectric materials can transform mechanical energy into electrical energy
and vice versa. Indeed they strain when an electrical ®eld is applied across them
and, on the contrary, produce a voltage under stress. The ®rst property allows
one to use these devices as actuators, while the latter makes them well suited as
sensors. These properties together with their small size and weight allow one to
use the piezoelectric materials to construct smart devices that can be used, for
example, for active control of vibrations.
The design of a high performance controller requires integrated modelling of

the structure, of the sensors and of the actuators. The problem has been
considered by several authors. In reference [1] a static model of a piezoelectric
device is coupled with the dynamic model of the structure. The in¯uence of the
electric network connected to the piezoelectric plate in a passive scheme has been
investigated in reference [2]. The capability of a single piece of piezoelectric
material to concurrently operate as sensor and actuator has been shown in
reference [3]. The model of distributed piezoelectric polymer has been obtained
in terms of a partial differential equation in reference [4], and by using a FEM
approach in reference [5]. A more general formulation of the coupling effects
between structure and piezoelectric devices is presented in reference [6]. In that
paper the general equation of an elastic body with piezoelectric material of
arbitrary geometry and arbitrary electrode arrangement is proposed. However
that approach is quite dif®cult to use, especially because it requires one to
construct the overall model as a whole.
The main aim of this paper is to present a simpli®ed model of the interactions

between the piezoelectric plates when they are applied on a beam-like structure.
In particular, the proposed approach allows the designer to construct the overall
integrated model by means of straightforward manipulations of standard form
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of the mechanical model, namely the typical form obtained via FEM
approaches.
The proposed approach has been used by the authors to design active

vibration controllers for ATR42 turbofan aircraft (see references [7] and [8]).

2. BEAM MODEL

In this section a ®nite element model is obtained for a beam-like structure: i.e.,
a structure with a dimension greater than the other two. Because of the three-
dimensional nature of this structure, a 3D ®nite element approach should be
used. This approach, however, generates high-dimensional models. To overcome
this dif®culty the authors, in reference [9], developed a simpli®ed approach based
on ``beam theory'' and on ®nite element methods.
By introducing a set of reference axes Oxyz as shown in Figure 1, where O is

the mass center of the cross-section at z=0, x and y are supposed parallel to the
principal axis of the structure; then the motion of each cross-section can be
evaluated by superposition of a vertical de¯ection u, a lateral de¯ection v, and a
rotation angle y.
In order to obtain a ®nite dimensional model, the ¯exible beam is divided into

n elements, and it is assumed that the shape of each of them is described, at each
time instant, by the corresponding static elastic line.
In the case of decoupled motions one has the dynamic model

Mu 0 0
0 Mv 0
0 0 My

0@ 1A �qu
�qv
�qy

0@ 1A� Ku 0 0
0 Kv 0
0 0 Ky

0@ 1A qu
qv
�qy

0@ 1A � fu
fv
cy

0@ 1A, �1�

where qu � �u1, a1, . . . , un�1, an�1�T is the vector of vertical lagrangian
coordinates, i.e., displacement ui and slopes ai in the x direction at abscissae zi of
the spatial discretization (z1=O, zn+1=L, with L being the length of the
beam), fu � � fu1 , cu1 , . . . , fvn�1 , cun�1�T is the vector of the vertical external
generalized forces acting at the n+1 nodes and Mu , Ku are the mass and
stiffness matrices of the vertical motions [10]. Similar notations are used for
lateral motions with qv � �v1, b1, . . . , vn�1, bn�1�T and fv � � fu1 , cv1 , . . . , fvn�1 ,
cvn�1�T. As regards the torsional motions, qy � �y1, w1, . . . , yn�1, wn�1�T is the
vector of twist angles yi and rate of variation of twist angles wi of the cross-
section at n+1 nodes, and cy � �cy1 , 0, . . . , cyn�1 , 0�T the vector of the torsion
moments (for further details see reference [9]).

y,v

O

x,u

z

Figure 1. Beam co-ordinate system and displacement conventions.
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It is worth noting that, in the case of a constrained beam, the dynamic model
can be obtained from equation (1) by eliminating the clamped Lagrangian co-
ordinates, the corresponding generalized forces and the corresponding rows and
columns of the mass and stiffness matrices.
In order to obtain a more general model, one must remove the assumption of

decoupled motions. Coupling phenomena can be determined by external
constraints or external forces acting in other directions than the inertia axes.
Moreover, coupling phenomena arise when the mass center G does not coincide
with the shear center C, so that a transversal load produces a torsional moment
and vice versa. These phenomena may be taken into account modifying the
stiffness matrix [9] to become

K �
Ku 0 ycKu

0 Kv xcKv

ycKu xcKv Ky � x2cKu � y2cKv

0@ 1A, �2�

where C � �xc, yc� is the position of the shear center with respect to the center of
mass. Then the dynamic model of the beam becomes

M�q� Kq � Bf f, �3�
where q � �qTu , qTv , qTy � is the vector of Lagrangian coordinates, M and K the
mass and stiffness matrix respectively, f the vector of actual generalized forces,
and Bf a matrix relating the external forces to the signi®cant forces fu, fv, cy.
Model (3) does not take into account internal damping. An easy way to assign

to each mode a given damping coef®cient xi, is to consider a damping factor of
the form

C �MV diag�2x1o1, . . . , 2xnon�Vÿ1, �4�
where V is the matrix of the eigenvectors of Mÿ1K, n is the number of
Lagrangian variables, and oi, i=1, . . . , n are the natural frequencies of the
system. Then the dynamic model of the mechanical system with damping may be
put in the form

M�q� C _q� Kq � Bf f: �5�

3. PIEZOELECTRIC MATERIALS

In this section the piezoelectric material relations are summarized [6]. In
particular, one focuses the attention on a piezoelectric plate with the poling
direction orthogonal to the plate (see Figure 2).
In the absence of electrical ®eld (e.g., short circuit), the mechanical

characteristics are de®ned by

sss � CEddd, �6�
where ddd � �ex, ey, ez, gxy, gyz, gzx�T is the vector of material strains and sss=
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(sx, sy, sz, txy, tyz, tzx)T is the vector of material stress. In the absence of strain
(e.g., clamped element), the electrical characteristics are de®ned by

d � eeeSe, �7�
where d � �dx, dy, dz�T is the charge displacement vector, e � �ex, ey, ez�T is the
electrical ®eld vector.
The piezoelectric characteristics, in the absence of electrical ®eld, are de®ned

by

d � Pddd, �8�
and, in the absence of strain, by

sss � ÿPTe: �9�
Finally, the global constitutive relations of a piezoelectric element can be

written as

d

sss

� �
� eeeS P
ÿPT CE

� �
e

ddd

� �
: �10�

As far as the matrices eeeS, P, CE are concerned, if the poling direction coincides
with the x-axis, equation (10) can be written as

dy
dz
dx

sy
sz
sx
tyz
tzx
txy

266666666666664

377777777777775
�

eS1 0 0 0 0 0 0 e15 0
0 eS1 0 0 0 0 e15 0 0
0 0 eS3 e31 e31 e33 0 0 0

0 0 ÿe31 cE11 cE12 cE13 0 0 0
0 0 ÿe31 cE12 cE11 cE13 0 0 0
0 0 ÿe33 cE13 cE13 cE33 0 0 0
0 ÿe15 0 0 0 0 cE44 0 0

0e15 0 0 0 0 0 0 cE55 0
0 0 0 0 0 0 0 0 cE55

266666666666664

377777777777775

ey
ez
ex

ey
ez
ex
gyz
gzx
gxy

266666666666664

377777777777775
: �11�

The superscript S means that the values are measured at constant strain and the
superscript E means that the values are measured with short-circuited electrodes.

Poling direction

 b

 vp

 s

 a z
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 x

Figure 2. Piezoelectric plate with two thin ®lm electrode surfaces.
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Let one consider the thin piezoelectric plate shown in Figure 2 and let s be its
thickness. Moreover by assuming that, in the presence of an electric voltage vp(t)
applied via two thin ®lm electrode surfaces, the electrical ®eld is constant within
the plate volume and equal to vp(t)/s. Under these hypotheses, for each planar,
in®nitesimally small element of the plate one can write

sx � cE33ex � cE13ey � cE13ez ÿ e33vp=s; �12a�

sy � cE13ex � cE11ey � cE12ez ÿ e31vp=s; �12b�

sz � cE13ex � cE12ey � cE11ez ÿ e31vp=s; �12c�

tyz � cE44gyz, tzx � cE55gzx, txy � cE55gxy, �12d±f�

dx � e31�ey � ez� � e33ex � eS3vp=s: �12g�
When the piezoelectric plate is perfectly bounded on the mechanical structure,

the strain equals to the corresponding one of the structure at the interface.
Upon assuming that there are no external forces acting on the piezoelectric

plate, the mechanical interaction between the piezoelectric plate and the
structure essentially consists of a uniformly distributed force acting at the
contour, orthogonal to the contour itself [1] and having a value per unit of
contour length given by p � ÿe31vp; while the charge displacement vector is

dx � �e31 ÿ e33c
E
13=c

E
33��ey � ez� � �eS3 � e33=c

E
33�vp=s: �13�

The current ip drained by the piezoelectric plate is equal to

ip �
� �

S

d dx
dt

dS � pp

� �
S

d

dt
�ey � ez� dS� Cp

d vp

dt
, �14�

where S indicates the piezoelectric area,

pp � e31 ÿ e33c
E
13=c

E
33 �15�

and Cp is the piezoelectric capacitance

Cp � �eS3 � e33=c
E
33��S=s�: �16�

In most applications the term e33=c
E
33 is negligible.

4. INTEGRATED MODEL

The integrated mechanical/piezoelectric model should take into account the
dynamics of the mechanical structure, the dynamics of the piezoelectric plates
and the dynamics of the external electrical circuits. However, in spite of use
specialized procedure [6, 5], one can obtain a simpli®ed model integrating the
previous described models. For the sake of notational simplicity, a structure with
only one piezoelectric plate will be considered.
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The mechanical part of the piezoelectric dynamics can be simply included into
the mechanical model of the structure by modifying the mechanical parameters
(mass, stiffness, etc.) of the elements on which the piezoelectric plate is bounded.
Henceforth one refers to equation (5) as the mechanical model of structure and
bonded piezoelectric plate.
The forces exerted by the piezoelectric plate on the structure give rise to some

torque moments acting on the elastic line and to a couple of axial forces of
magnitude F � ae31vp, that can be generally neglected. In particular, for a
piezoelectric plate bonded with a side parallel to the beam axis (see Figure 3),
the torques will be

M�x � ae31Dxvp, M�y � ÿae31Dyvp, �17�

Mÿx � ÿae31Dxvp, Mÿy � ae31Dyvp, �18�
where a is the length of the piezoelectric plate in the direction orthogonal to the
beam axis, and Dx and Dy are the distances of the center of mass of the
piezoelectric plate from the principal axis of inertia of the structure. The
moments are applied at the knots in the correspondence of the piezoelectric plate
extreme. It is useful to impose that zÿ and z+ coincide with knots of the spatial
discretization. In this case, by means of straightforward calculations, the torques
can be taken into account in the vector of generalized forces f of (5) by writing

f � fTp vp�t�, �19�
where fp can be constructed by means of the scheme

q � �. . . , aÿ, . . . , a�, . . . , bÿ, . . . , b�, . . .�T,
# # # #

fp � e31a�. . . , ÿ Dx, . . . , Dx, . . . , Dy, . . . , ÿ Dy, . . .�T, �20�
where aÿ is the slope at the zÿ extreme of the piezoelectric plate (see Figure 3),
and so on.
As far as the electric dynamics are concerned, the current drained by the

piezoelectric plate is given in equation (14) as a function of some components of
the strain vector e. To express this current as a function of the Lagrangian
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x

Figure 3. Action exerted by piezoelectric plate on a beam structure.



LETTERS TO THE EDITOR 489

variables, it is convenient to rewrite equation (14) as

ip � �d=dt�Q �21�
where

Q �
� �

S

dx dS � pp

� �
S

�ey � ez� dS� Cpvp: �22�

To evaluate the integral on the right side of equation (22), one notes that� �
S

�ey � ez� dS �
�Dy�a=2

Dyÿa=2

�z�
zÿ
�ey � ez� dz

 !
dy, �23�

where zÿ and z+ are the abscissae of the piezoelectric plate extreme. The term
ey+ ez related to the ith element of the discretized beam can be approximated,
by using the elastic line equation, as

eyi � ezi1
mÿ 1

m

�
�ui�1 ÿ ui� 12

l3i
xÿ 6

l2i

� �
� ai

4

li
ÿ 6

l2i
x

� �
� ai�1

2

li
ÿ 6

l2i
x

� �� �
x

� �vi�1 ÿ vi� 12

l3i
xÿ 6

l2i

� �
� bi

4

li
ÿ 6

l2i
x

� �
� bi�1

2

li
ÿ 6

l2i
x

� �� �
y

�
, �24�

where m is the Poisson's ratio of the beam, li is the length of the ith element and
x2 [0, li].
The inner integral of equation (23) can be rewritten as

Xp�
i�pÿ

�li
0

�eyi � ezi� dx, �25�

where pÿ and p+ are the indices of the piezoelectric plate abscissae extreme. By
cumbersome calculations the integral expression (25) can be rewritten as

�a� ÿ aÿ�Dx � �bÿ ÿ b��y, �26�
and then one has� �

S

�ey � ez� dS � �a� ÿ aÿ�Dxa� �bÿ ÿ b��Dya, �27�

so that the current drained by the piezoelectric plate may be expressed as

ip � pp��mÿ 1�=m��� _a� ÿ _aÿ�aDx � � _bÿ ÿ _b��aDy� � Cp _vp: �28�
Equation (28) may be rewritten in the more compact form

ip � hT _q� Cp _vp, �29�
where

h � ��mÿ 1�=m��pp=e31�fp: �30�
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Remark 1. It is interesting to note that ip depends on the Lagrangian co-
ordinates q through the same vector fp that apears in equation (19); thus the well
known passivity property of static colocated feedback is guaranteed.

The electric dynamics of the piezoelectric plate and of the external electric
circuits may be included into the mechanical model by considering the equivalent
scheme shown in Figure 4, in which P is an ``ideal'' piezoelectric element which
absorbs the current ip � hT _q and exerts a force given by equation (19) on the
mechanical structure,

�d=dt�i � ÿ�R=L�iÿ �1=L�vp � �1=L�v0, �31�

�d=dt�vp � �1=Cp�iÿ �1=RpCp�vp ÿ �hT=Cp� _q: �32�
v0(t) is the internal voltage of the voltage source, vp(t) is the voltage at the
piezoelectric electrodes, i(t) is the total current drained by the piezoelectric plate,
R and L are the electrical resistance and inductance of the voltage source and of
the electrode leads, Cp is the capacitance of the piezoelectric plate and Rp is a
resistance taking into account the dielectric energy dissipated into the
piezoelectric plate.

Remark 2. The model of a piezoelectric plate used as sensor is obtained from
the previous equations by setting v0=0; i.e., short-circuiting the piezoelectric
electrodes.

The whole dynamic model in the presence of one piezoelectric sensor and one
piezoelectric actuator is

M 0 0

hTa =Cpa 1 0

0 0 1

0B@
1CA �q

�va
�is

0B@
1CA� C 0 fpsLs

hTa Ra=CpaLa a0a 0

ÿhTs =LsCps 0 a0s

0B@
1CA _q

_va
_is

0B@
1CA

�
K ÿfpa Rsfps

0 a00a 0

0 0 a00s

0B@
1CA q

va

is

0B@
1CA � 0 Bf

1=LaCpa 0

0 0

0B@
1CA v0

f

� �
, �33�

where the subscript s refers to piezoelectric sensor quantities and the subscript a
to actuator ones, and

R

v0 vp

Rp

Cp

P

Mechanical 
structure

Piezoelectric

ip =hT
i

L
q

Figure 4. Equivalent scheme of a piezoelectric device with external electronics.
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a0a � Ra=La � 1=RpaCpa, a00a � Ra=LaRpaCpa � 1=LaCpa,

a0s � Rs=Ls � 1=RpsCps, a00s � Rs=LsCpsRps � 1=LsCps:

It can be noted that, even if ha= hs (colocated control), by choosing v0(t)
proportional to is(t), the passivity condition is no longer guaranteed, due to the
presence of sensor and actuator dynamics in accordance with the well known
result of reference [11].

Remark 3. Note that due to ®nite thickness of the piezoelectric plate and of
the beam, only a fraction of the generated force,

p0 � Zp, �34�
is transmitted to the beam (see Figure 5). Upon assuming linear strain and that
the beam surface is equal to that of the bonded piezoelectric plate, an
approximation of Z is given in reference [9] as

Z11=�1� �4s=l��sE11 � sE12�=�s11 � �s12�, �35�
where sEij are the entries of the inverse of the CE matrix, and �sij are analogue
parameters for the beam. This phenomenon may be taken into account by
modifying equations (17) to become

M�x � �cxae31Dxvp, M�y � ÿ�cyae31Dyvp, �36�

Mÿx � ÿ�cxae31Dxvp, Mÿy � ÿ�cyae31Dyvp, �37�

where �cx and �cy are positive constants smaller than 1.

5. CONCLUSIONS

In this note, the authors have shown how to develop a simpli®ed model of a
beam-like structure with bonded piezoelectric plates. The model is obtained by
integrating usual electrical and mechanical models. In particular the mechanical
structure is modelled by means of a FEM approach, whereas electrical dynamics
of the piezoelectric plates have been described via an RLC circuit.

p'

p

Beam
l

Piezoelectric plate

s

Figure 5. Reduction of the ef®ciency of a piezoelectric actuator due to ®nite thickness.
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